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An investigation of the mechanism responsible for the self-excited oscillations of 
a harmonium reed is presented. Experiments show that the amplitude of vibra- 
tion of the reed grows exponentially, and measurements of the growth rate as a 
function of the flow past the reed are reported. Flow visualization studies lead 
to the conclusion that jet or wake instability is not important in exciting the reed 
vibration.. An analysis of the flow around the reed as an unsteady potential flow 
results in the evaluation of the aerodynamic forces exciting the reed. The analysis 
shows that the pressure which excites the reed motion is of the order of pUoa, 
where U, is the flow velocity and a is the reed velocity. 

1. Introduction 
The study of acoustics from a fluid mechanics point of view has received 

considerable attention in recent years, with particular emphasis directed to- 
wards the noise generated by jets, wakes and boundary layers. A group of sound 
sources which appear to have been studied much less thoroughly are those 
found in the wind instruments and whistles. This group includes an interesting 
variety of sound sources, all of which have been developed empirically to satisfy 
the criteria that they be efficient producers of sounds of a definite, controllable, 
and audible pitch, and that they be operable under flow conditions which can be 
produced by the human lungs. The aerodynamics of many of these sources is still 
not well-understood, whereas the acoustic properties of the resonators associated 
with the various sources have been studied rather extensively in many cases. The 
mechanics of these familiar devices, however, would seem to have some intrinsic 
interest, and may possibly be of technological interest in certain applications 
concerned with preventing or controlling sound production and vibration. 

Experimental investigstioiis of the unsteady flow associated with sound 
production have raised several interesting questions in fluid mechanics, while 
providing enough information to classify some of the sources according to their 
basic mechanism. It would appear that these sources can be divided into four 
groups characterized by the nature of the fluid-mechanical instabilities which are 
responsible for the self-excited oscillations of the flow. 

The first class of soundsources, and the one that has received the most 
attention, consists of the edge tones. These sources depend on the instability of a 
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well-developed plane jet to the formation of an alternating vortex street, and 
the subsequent interaction of the vortices with a solid boundary upon which the 
jet impinges. They include the edge tone itself (Brown 1937; Curle 1953), and 
the edge tone coupled to a resonator, as in the organ pipe (Cremer & Ising 1967) 
and in the flute (Coltman 1968). 

A second class of sound sources consists of the hole tones. The mechanism which 
is common to the devices belonging to this classis theinstability of anundeveloped 
jet to the formation of vortex rings and the interaction of the rings with a sta- 
tionary boundary in the flow. Typical members of this class are the Pfeifentone 
(Anderson 1955), the Rayleigh bird-call (Chanaud & Powell 1965), and human 
whistling (Wilson et al. 1971). 

There are other wind instruments which depend, for their operation, on the 
presence of a vibrating boundary in the flow. These instruments can be divided 
into two groups which comprise the remaining two of the proposed four basic 
classes. One of these groups consists of the reed instruments. For this group the 
geometry of the flow is such that the flow separates from the reed at a sharp edge 
and the streamlines along the reed surface turn through an angle greater than 90" 
in forming the free jet. It is shown in this paper that the pressure forces developed 
in the unsteady potential flow past the reed excite the reed vibration. 

There are sound sources associated with other wind instruments which involve 
a vibrating boundary in the flow, but which have geometries which do not meet 
the requirements for the mechanism responsible for the excitation of the reed 
vibrations. The vibrating lips in the playing of brass instruments, the vocal cords 
and the vibrating membrane of birds are apparently members of a fourth group 
having an excitation mechanism differing from that for the reed instruments. The 
fundamental mechanism for this group may depend on an unsteady boundary- 
layer effect. 

This paper is concerned primarily with one member of the reed-instrument class 
of sound sources, namely the type of metal reed used in the harmonica and the 
harmonium (reed organ). Flow visualization studies are described which indicate 
that jet instability is not important in exciting the reed vibrations. The paper 
then describes an analysis of the potential flow through the slit bounded by the 
reed and the supporting structure. The aerodynamic forces which excite the 
vibration of the reed are calculated and comparisons with experiment are 
presented to substantiate the analysis. 

2. Geometry and operation of the harmonium reed 
The geometries of the harmonium reed and the harmonica reed are similar, and 

are shown in figure 1. The reed is essentially a thin metal plate which is riveted at 
one end to a support plate so that in the undisturbed position the reed is situated 
just above the plane of the support. In  the harmonium, the support plate forms an 
integral part of the shallot, and throughout this paper the term shallot will be 
used when referring to this support plate. There is a rectangular opening in the 
shallot immediately beneath the reed, the size of the opening being slightly 
larger than the reed. This configuration allows the reed to vibrate as a canti- 



Aerodynamic excitation of the harmonium reed 805 

levered beam. The geometry of a typical reed is such that the size a of the gap 
between the reed and the shallot plane is small compared with the reed width h 
which, in turn, is small compared with the length I of the reed. Furthermore, all 
reed dimensions are small compared with the wavelength of the sound being 
produced by the reed. It follows that it is reasonable to expect that the flow 
within distances less than I away from the reed is nearly two dimensional and 
that the fluid is nearly incompressible in the flow near the reed. 

FIGURE 1.  Schematic of the harmonium reed and shallot plate. 

Reed fo(Hz) t(cm) W m )  4cm) 
A 165 0.022 0.58 3.80 0.035 
B 226 0.030 0.46 4.20 0.020 

TABLE 1. Reed characteristics 

A self-excited oscillation of the reed occurs when the pressure on the top of the 
shallot is raised and a sufficient flow through the gaps between the reed and the 
shallot is produced. From the point of view of considering the aerodynamic 
forces on the reed as drag forces, it is somewhat surprising that the forces will 
excite the reed vibration. In  order for the flow to put energy into the reed motion, 
the drag must be reduced when the reed is moving upward, against the flow, and 
the drag must increase when the reed is moving downward, in the direction of the 
flow. 

In  order to study the growth of the reed vibration in the laboratory, two reeds 
were removed from a reed organ and each was attached to an appropriate shallot. 
The dimensions of the two reed assemblies are given in table 1, which also includes 
the natural frequency fo of each reed. 

The shallot plate formed one wall of a plenum chamber. The flow rate through 
the slot in the shallot was measured by means of a calibrated orifice set in the air 
supply line to the plenum chamber. The amplitude of the bending of the reed was 
determined by the use of a strain gauge attached to the upstream surface of the 
reed close to  the point of support. Measurements of the decay or growth of the 
reed vibration were made over a range of flow rates. This was accomplished by 
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fixing the flow rate and then releasing the reed, either from a displaced position if 
the flow was too low to excite the vibrations, or from the equilibrium position if 
the flow was high enough to excite the vibrations. Typical oscillograms showing 
the time history of the strain gauge output are shown in figure 2 (plate 1).  

The experiments revealed that the vibration amplitude decays exponentially 
for small enough amplitudes, and also that the growth under self-excitation is 
exponential up to an amplitude of about 40 yo of the limiting amplitude. Hence, 
for small amplitudes, the amplitude is proportional to  e". The values of the 
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FIGURE 3. Vibration growth rate  as a function of volume flow 
r a t e f o r r e e d A . f ( H z ) : O ,  165; A, 137; 0, 120. 

quantity e were found by inspection of the oscillograms, and are plotted as a 
function of the flow rate Q in figures 3 and 4. Also shown on these figures are 
results obtained when the reeds were modified by the addition of small masses 
to the reed tips. These masses were used to  reduce the vibration frequency of the 
reed without changing the reed geometry. The amplitude decay a t  zero flow is 
assumed to be due to material damping. Figures 3 and 4 show that the aero- 
dynamic forces add to  the damping for small flows, but for higher flows the 
vibration becomes self-excited and at high values of the flow rate the growth rate 
increases nearly linearly with &. 
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3. Flow visualization experiments 
Flow visualization studies were carried out to determine whether a jet insta- 

bility could be the mechanism driving the reed vibration. Preliminary studies 
were made using the harmonium reeds and the flow system described earlier. 
Smoke was added to the air in the plenum chamber supplying the flow to the 
reed, and stroboscopic lighting was used to view the flow field near the reed. The 
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FIGURE 4. Vibration growth rate as a function of volume flow 
rate for reed B.f(Hz): 0, 225; A, 190; 0, 161. 

small size of the reed, however, resulted in some difficulty in observing the flow 
pattern, with a consequent uncertainty concerning the presence or absence of 
jet instability. Nevertheless, these experiments did reveal that the flow in the 
vicinity of the reed was two-dimensional. 

Since no definitive conclusions concerning jet instability could be drawn from 
the smoke experiments, model flow visualization experiments were run in a water 
tunnel. This facility, which is capable of providing uniform accurately-known 
flows, has been described in detail elsewhere (Beavers & Wilson 1970). Visualiza- 
tion of the flow field was accomplished by the injection, via hypodermic tubes, 
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of four neutrally-bouyant dye streams into the flow on the upstream walls of 
both the model reed and the shallot plate. The model reeds were positioned in the 
tunnel test-section such that experiments could be performed with the reeds 
both stationary and oscillated by an external driver. 

Typical flow patterns are shown in figures 5 and 6 (plate 2). It can be seen that 
the flow separates at the gaps and the two free jets intersect and combine down- 
stream of the reed. The angle between the direction of each jet and the plane of the 
reed agrees well with the prediction of the potential flow analysis of the formation 
of a free jet in this geometry (Birkhoff & Zarantonello 1957). Figure 5 shows 
flow patterns for the reed held stationary at a large distance from the plane of the 
shallot (hla = 4-37). At low flow rates (figure 5 (a ) )  the vortex formation in the 
vortex sheets bounding the jets was always observed to be symmetric, similar to 
that observed in single jets (Beavers & Wilson 1970). On the other hand, at higher 
flow rates (figure 5 ( b ) )  the vortex formation appeared to become alternating. 
Figure 6 compares flow patterns with the reed held stationary with corresponding 
patterns at the same flow rates with the reed oscillating with a very small 
amplitude about a mean position such that h/a x 15. The flow rates for these 
experiments were adjusted to correspond to flows near the extremes of the 
operating range in the real situation. In  all comparisons no major differences in 
the flow patterns could be discerned. 

Although vortex streets are formed in the jet downstream of the reed, the 
Strouhal number for the vortex formation was always observed to be more than a 
factor of 10 higher than the Strouhal number based on the reed frequency. Even 
when the model reed was oscillated at a frequency suitably scaled for the experi- 
ments, no clear periodic jet instability having the frequency of the reed vibration 
was excited in the vicinity of the reed. It was concluded, therefore, that, unlike 
the mechanism for exciting the edge tones, hole tones and Aeolian tones, the jet 
or wake instability is not important in exciting the reed vibrations. This con- 
clusion is consistent with the fact that the Strouhal number of the reed vibration, 
f a /Uo ,  is less than 0.01, a value which is less than the reported Strouhal numbers 
associated with jet and wake instabilities. Furthermore, it  is consistent with the 
observation that the vibration amplitude of the reed grows exponentially, which 
implies that the force which excites the vibration has an amplitude which is 
proportional to the amplitude of the vibration. This would not be expected to be 
the case if the force arose from a jet instability which is only triggered or regulated 
by the reed vibration. 

4. Analysis of the flow 
The unsteady potential flow for the reed geometry is now analyzed and the 

pressure forces which add energy to the reed motion are evaluated. An apgroxi- 
mate analysis of the flow is made by dividing the flow into five regions, as shown 
in figure 7, in which different approximate descriptions of the flow are appropriate. 
In  the actual reed configuration the reed is situated a small distance a above the 
shallot plane in the early stages of the amplitude growth, thus creating two gaps 
each of which has an area given approximately by al. In this analysis the flow past 
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the reed is approximated by assuming that the reed lies in the shallot plane, with 
a gap of width a on either side of the reed. 

The first flow region to be described is the region upstream of the gaps and near 
the reed where the flow is very nearly two-dimensional. This is designated as 
region I in figure 7. The flow in this region is approximately that due to two line 

\ 
4 / - - - - -  - 

/ 

/ 
/ 

/ 
/ 

/ 
/ 

I 
I 
I 

s '  

I 

I 
\ 
\ 
\ t 
\ 1 
\ / 
\ / 

V 

FIGURE 7. The assumed flow regions surrounding the reed. 

sinks located a t  x = & x,, y = 0, where x, = $(h + a), together with a uniform 
Source distribution over the entire reed surface. The source distribution is 
required to match the boundary conditions imposed on the flow by the reed 
motion. The potential in region I is then given by 

$1 = - (Q/4d) In [ ( x 2  - y2 - ~ t ) ~  + 4x2y2] 

- (u1/277Z) (x - i h )  In [(z - @)2+ yz] ( 
- (z+~h)In[(z+Qh)2+y21 

+ 2y [tan-' (F) - tan-1 (+)I) , 

where Q is the total volume flow through the two gaps, each of constant length I ,  
and a1 is the rate at which each gap area is changing. When the cylindrical radial 
co-ordinate r is large compared with the reed width h, the expression for can be 
approximated by 

+I = - (Qq) 1nr. 
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At distances larger than the reed length I ,  the flow is three dimensional and a 
second region (11) is introduced in which the flow is assumed to be that due to a 
three-dimensional sink situated a t  the reed centre. The potential in region I1 
is thus given by the expression 

where R is the spherical radial co-ordinate. 
Attention is now turned to the flow field downstream of the reed. Here the flow 

is divided into three distinct regions in which different approximations are 
introduced. Experiments have shown that the flow separates from the reed and 
the shallot at the gaps and forms two free jets. The downstream side of the reed is 
covered by the ‘dead water ’ region bounded by the jets (figures 5 and 6). Further- 
more, the flow visualization experiments indicated that this fluid moves with the 
reed. A simple approximation, therefore, is to assume that there exists a region 
I11 just behind the reed and extending to approximately r = &h in which the 
pressure is uniform. Further away from the reed, the unsteady flow into the 
region downstream of the shallot produces a flow which is approximately two 
dimensional. This region is indicated by region IV  in figure 7. Finally, at large 
distances from the reed, there exists a three-dimensional source flow (region V) 
corresponding to the three-dimensional sink flow on the upstream side of the 
shallot. The potentials in regions IV and V can be written in forms analogous to 
the potentials in regions I and I1 respectively. However, there would be very 
little pressure recovery in the flow downstream ofthe reed if the flow were steady. 
Thus only the unsteady part of the volume flow through the gaps, SQ, is included 
in the potentials #Iv and dv which are to be used to compute the pressure field 
downstream of the reed. The appropriate forms of the potentials are therefore 

and 
SQ - hki 

$v = -(=). 
The potentials expressed above are now used to compute the pressure field. 

This is achieved by equating the pressures on the two sides of each of the boun- 
daries separating the various flow regions. The overlapping of the boundaries 
separating regions I and 11, and I V  and V, are neglected within the spirit of the 
assumptions already made in the analysis. There is a logarithmic singularity in 
the pressure at the edge of the reed on the upstream side, and thus the connection 
between regions I and I11 is best made at the edge of the shallot. This is done by 
setting the pressure in region I11 equal to the pressure in region I at the point 
x = &h + a, y = 0. The pressure difference between the upstream and downstream 
reservoir pressures is then given in terms of the flow variables, and to lowest 
order in a/h, by the expression 
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The flow rate an.d gap size are now assumed to be given by 

Q = Qo+&ieiwt, j 
a = a, + a, eiwt. 

811 

When equations (7)  are substituted into (6) and only linear terms in the pertur- 
bation quantities are retained, the relation between Q, and a, is obtained in the 
form 

I ,  W"W0 

'950 l+i-ij- 

It can be seen from equation (8) that if the frequency of the gap oscillation is 
small, the fractional change in the volume flow is the same as the fractional change 
in the gap size. On the other hand, at  higher frequencies, the flow perturbation is 
reducedand lags behind the gap perturbation on account of the inertia of the fluid. 

The objective of the analysis is to calculate the component of the unsteady 
force which is in phase with the reed velocity. This unsteady force component is 
derived from the pressure difference across the reed, which can now be calculated. 
The pressure over the downstream side of the reed is uniform and is equal to the 
pressure at the edge of the shallot on the upstream side. Thus the pressure dif- 
ference Ap  between the top and the bottom of the reed is given approximately 
by the quantity [p(x, y = 0) -p(x = u + ih, y = O)] evaluated in region I. This 
yields the following expression for A p  

14 
Q 4+ln 

A p  Apo 1 Q2 x2 

p 
- - 

p 2 71212 (xi - x2)2 - % [ ( 4h2(x$ - x2,)1 

&h+x +- 2h+hln - -xln - -ihIn($h2-x2) 
a [  77 (Li) (4h-3c) 

The component of the pressure differen.ce which is in phase with the velocity is 
then obtained by substituting equations (7) into (9)) using (8) toreplace Q1 by a,. 
Upon collecting terms which are linear in a,, of lowest order in a,/h and in phase 
with a, an expression for the in-phase pressure component 8p is obtained, which is 

Finally, the average force per unit area., &, which excites the reed motion is 
obtained by integrating this pressure difference over the reed surface 

8p = - 



a12 

where a change of sign is introduced so that positive 
increasing y (figure 7).  The integration of equation (10) yields 
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is in the direction of 

where q = Qo/nwla$ ( 1 2 )  

Inspection of equation (11) shows that the aerodynamic force will add to the 
damping for small values of q, whereas it will add energy to the vibration for large 
values of q. The magnitude of the force is of the order of pU,a per unit area, where 
U, is an average jet speed given by Qn/2Zao. 

5. Comparison of analytical and experimental results 
The experimental data can be compared with the analytical results most 

conveniently by computing an effective value of @ from the experimental data 
and comparing this with the value given by equation (1 1). The experimental 
value of & is obtained by computing the force which is required to produce the 
observed rate of change of the reed energy E .  This is accomplished by noting that 
the work done by the pressure forces is equal to the observed energy change 
minus the energy change due to material dissipation. This latter quantity is 
assumed to be given by the damping at zero flow, so that the equation giving the 

where the integral is taken over the surface S of the reed. If dp is proportional to a, 
then Sp/a is constant over the reed surface and can be taken out of the integral. 
Furthermore, for a uniform reed the quantity 

E a2 dS 

is just the mass per unit area of the reed; and since the mode shape is nearly the 
same for the reeds loaded with a mass at %he tip as for the uniform reed, this 
quantity can be approximated by the relationship 

which can be used for both loaded and unloaded reeds. In (14), pB is the density 
of the reed, t is the reed thickness,!, is the frequency of vibration of the unloaded 
reed, and f is the frequency of the reed, either loaded or unloaded. Finally, since 
the reed energy is proportional to the square of the vibration amplitude, the 
vibration growth rate E can be written in terms of the energy change by the 
expression 

E = $/2E. 
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FIGURE 8. Dimensionless pressure force as a function of dimensionless volume flow rate 
for reed A.f(Hz): 0, 165; A, 137; 0, 120; -, equation (11). 
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FIGURE 9. Emensionleas pressure force 8s a function of dimensionless volume flow rate 
for r e e d B . f ( H z ) :  0, 225; A, 190; 0, 161; -, equation (11). 
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It follows that a dimensionless experimental value of & can be computed from 
the data by means of the expression 

The experimental and analytical values of &.I for the two reeds are shown in 
figures 8 and 9. It can be seen that the non-dimensionalizations of Qo and& which 
were obtained from the analysis are successful in bringing the experimerital data 
for different frequencies close to a common curve, and that the order of magnitude 
of the experimentally determined force agrees with the results predicted by the 
analysis. The qualitative features of the shapes of the experimental and analytical 
curves are similar,but for reed B (figure 9) thevalue of q at which the aerodynamic 
force changes sign is observed to be higher than the value predicted by the 
analysis. Several factors may contribute to this discrepancy. The gap size for this 
reed is very small, so that a small difference between the width of the shallot slot 
and the width of the reed would make the effective gap size somewhat larger, with 
a corresponding reduction in the experimental values of q. In  addition, this reed 
has a slight taper from the base to the tip, so that the effective length is therefore 
somewhat less than the actual total length. 

In conclusion, figures 8 and 9 indicate that the agreement between experiment 
and analysis is good considering the non-uniformity of the reeds and the approxi- 
mations iiivolved in the analysis. 

6. Discussion 
The mechanism responsible for the excitation of the reed vibration can be 

described qualitatively by reference to the analytical results derived earlier. 
When the reed is moving upwards, the gap size is increasing and thus, from (8), the 
flow is increasing. It follows by inspection of (9) that the pressure above the reed 
rises towards the upstream reservoir pressure more slowly with distance from 
the edge of the reed than it would if the flow were steady. It may be deduced from 
( 1  0) that the pressure on the upper surface of the reed is reduced when the gap 
size is increasing and the flow is accelerating. This occurs because most of the 
fluid inertia is contained in the fluid far from the gaps. Conversely, when the gap 
size is decreasing, and the flow therefore is decelerating, the pressure on the upper 
surface of the reed is slightly higher than it would be for steady flow. Parentheti- 
cally, it  must be pointed out that the effect is reversed at low volume flow rates, 
when the volume displacement of fluid resulting from the reed motion becomes 
the dominant factor. For example, as the gap size increases, the volume displace- 
ment more than offsets the requirements for an increasing flow through the gaps, 
so that the fluid far from the gaps must be decelerating. However, a t  higher 
values of the upstream reservoir pressure, and therefore higher flows, the rate of 
volume displacement due to the reed motion is negligible compared with the 
change in the flow resulting from the variation in gap size. 

There are certain requirements which must be met by the geometry of the 
reed in order that this mechanism may excite the reed vibration. First, the flow 
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must separate from the reed at a sharp edge, so that the flow is attached on 
one side of the reed and separated on the other. A second requirement is that the 
side of fluid attachment must be that side of the reed which is away from the 
gaps. For example, if the equilibrium position of the reed were below the shallot, 
the vibration would not be excited by the flow. For this configuration the flow 
would decrease as the reed moved up, and the deceleration of the fluid would 
result in a high pressure on the upper surface of the reed. As a consequence, the 
energy of the reed vibration would be reduced. It is interesting to note that in 

Clarinet reed Oboe reed 

FIGURE 10. Sketches showing typioal single and double reeds used in certain woodwind 
instruments : A denotes the side of the reed with attached flow, B denotes the side of the 
reed with separated flow. 

the harmonica there is a reed on both the top and bottom walls of each of the 
small pressure chambers which are supplied with air by the mouth. There is a 
flow past both reeds during both the blowing and sucking modes of operation, 
but only one of the two reeds is excited by each mode. The reed which lies inside 
the chamber is excited by blowing whereas the one which lies on the outside of 
the opposite wall is excited by sucking. 

It is thought that the mechanism which is described in this paper could also 
excite the vibrations of other types of reeds. Sketches of single and double reeds, 
as used in the clarinet and oboe respectively, are shown in figure 10. It can be seen 
that these reeds satisfy the requirements on the geometry with respect to a gap of 
varying size and a sharp edge a t  which the flow can separate. In addition, the 
condition that the flow be attached to the side of the reed away from the gap is 
also satisfied by these reeds. 
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FIGURE 2. Typical oscillograms showing (a) the decay, and ( b )  the growth of the vibration 
amplitude : (a) flow rate too low t o  excite vibrations ; (5) flow rate high enough to promote 
reed excitation. 
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FIGURE 5 .  Photographs showing vortex pattern downstream of a stationary reed for 
h/a = 4.37: (a) low flow rate; (b)  high flow rate. 

FIGURE 6. Comparison of the flow patterns for stationary and oscillating reeds: (a) and (b )  
are at  identical flows; ( c )  and (d )  are a t  identical flows. 
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